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ABSTRACT 

Regularized algorithms for finding molecular 
force field parameters developed as the joint 
treatment of quantum mechanical and 
experimental data within stable numerical 
methods are successfully applied to the receiving 
the so-called regularized quantum mechanical 
force constants.  

  
INTRODUCTION 

Molecular force fields provide very 
important  information about molecular structure 
and molecular dynamics and may be determined 
within harmonic approximation from 
experimental data of vibrational (Infrared and 
Raman) spectroscopy as a result of solving so-
called inverse vibrational problem. Rapid 
progress in quantum mechanical calculations of 
theoretical harmonic force fields provides new 
ways for more accurate interpretation of 
experimental data as well as new possibilities for 
development of empirical force field 
calculations. The latter are particularly important 
for the large size molecules for which accurate 
ab initio calculations are impossible, so that 
empirical methods based on a solving an inverse 
vibrational problem still remain the best 
available source of force field parameters.  

Fast progress in the investigation of rather 
large nanomolecules needs in development of 
special approaches for solving inverse 
vibrational problems moving far beyond 
traditional unstable methods based on the mean 
square root procedures. Analysis of large 
molecular systems (when a force constant matrix 
F is constructed from previously evaluated force 
constants of model compounds) run across to 
difficulties of possible incompatibility of results 
determined by different authors and by means of 
different numerical methods within different 
approximations (force field models). These 
difficulties related to nonuniqueness and 
instability of the solution of inverse vibrational 

problem as well as to incompatibility within 
harmonic model of experimental data available.  

To overcome the difficulties the special 
numerical algorithms based on Tikhonov’s 
regularization method have been proposed [1-3]. 
In practical terms molecular spectroscopists 
employ model assumptions arising from the 
classic theory of chemical structure, involving 
concepts of bonded and nonbonded interactions, 
bond orders, monotone changes of the physico-
chemical properties in series of related 
molecules, and the preservation of properties of 
separate molecular fragments, all related to the 
general concept of transferability of force 
constants. We proposed [1-3] to formalize these 
model assumptions and use them in the force 
field calculations. Calculated within such 
approach molecular force constants are included 
in the developed database of molecular 
parameters. 

 
MATHEMATICAL FORMULATION OF 
INVERSE VIBRATIONAL PROBLEM 

The idea of the force field arises from the 
attempt to consider a molecule as a mechanical 
system of nuclei while all the interactions due to 
electrons are included in an effective potential 
function U(q1,...qn), where q1,...,qn  denote the 
n=3N-6 generalized coordinates of the N atomic 
nuclei of the molecule. The potential function 
minimum (with respect to nucleus coordinates) 
assigns the equilibrium geometry of the 
molecule and the second derivatives of the 
potential with respect to nucleus coordinates in 
the equilibrium 
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constitute a positive definite matrix F 
determining all the molecular characteristics 
connected with small vibrations. The vibrational 
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frequencies (obtained from IR and Raman 
spectra) are the main type of experimental 
information on molecular vibrations. They are 
connected with the matrix of force constants by 
the eigenvalue equation 

 
 GFL L= Λ    (1) 
 

where Λ is a diagonal matrix consisting of the 
squares of the molecular normal vibration 

frequencies { }ω ω ω ω1 1
2 2,... , ,... ,n ndiagΛ = , 

and G is the kinetic energy matrix in the 
momentum representation. L is a matrix of 
normalized relative amplitudes. 

If only the experimental frequencies of one 
molecular isotopomer is known, inverse 
vibrational problem of finding force constant 
matrix F reduces to the inverse eigenvalue 
problem; hence, when G is not singular it 
follows that as a solution of Eq. (1) one has any 
matrix F such as 

 

F G C C G= − −1 2 1 2/ * /Λ    (2) 
 

where C is an arbitrary orthogonal matrix (the asterisk 
denotes the transposed matrix).  

While Eq. (1) is the main source of data 
determining the force constants, it is evident that 
(except diatomic molecules) the n(n+1)/2 
parameters of F cannot be found uniqueness 
from the n frequencies ω ω1 ,... n . This has led, 

on the one hand, to attempts to use certain model 
assumptions concerning the structure of the 
matrix F, and, on the other hand, to introduce the 
additional experimental data. Within the 
approximation considered, the force field of a 
molecule does not depend on the masses of the 
nuclei, and hence for the spectra of m isotopic 
species we have, instead of Eq. (1), the system 

 
( )G F L L i mi i i i= =Λ , , ,... .L 1 2   (3) 
 
The additional information may be extracted 

also from ro-vibrational spectra (Coriolis 
constants), gas electron diffraction (mean square 
amplitudes), etc. where molecular constants are 
determined by force constant matrix F. 

The mathematical relation between the 
molecule vibrational properties (Eqs. (1),(3), 
etc.) and its experimental display can be 
summarized in the form of a single operator 
equation 

AF = Λ .    (4) 
 
Here F∈ Z ⊆ Rn(n+1)/2 (Z is a set of possible 

solutions) is the unknown force constant matrix 
(real and symmetrical), Λ∈Rm represents the set 
of available experimental data (vibrational 
frequencies, etc.) 

Let introduce the following norms in the 
Euclidian space: 
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where  ρk > 0 are the positive weights; fij  are the 
elements of matrix F; λk (k= 1,...m) are the 
components of Λ. 

It is well known that the operator Eq. (4) can 
have finite or infinite number of solutions or 
even no solutions at all. The latter case can result 
from the crudeness of the physical (and 
mathematical) model which does not take into 
account some essential points, such as 
vibrational anharmonicities. The possible errors 
in the right-hand side and in operator A, however 
small, may cause finite (and large) variations of 
the solution F.  

These properties of Eq. (4) make clear that 
the mathematically formalized problem of force 
field calculation belongs to the class of so-called 
ill-posed problems [3]. For solving ill-posed 
inverse vibrational problem, we have proposed 
to use Tikhonov’s regularization method [1-3]. 
An inverse vibrational problem is formulated as 
a problem of finding the so-called normal 
solution (or normal pseudo(quasi) solution in the 
case of incompatibility of input data) of a 
nonlinear operator equation (4). 

The solution we are searching for is a matrix 
Fα ∈ Z that reproduces experimental data within 
given error level and is the nearest in the 
Euclidian metric to some given matrix F0. All 
necessary model assumptions (explicit and 
implicit) concerning the form of force field may 
be taken into account by a choice of some given 
a priori matrix of force constants F0 and a 
preassigned set D of a priori constraints on 
values of the force constants. This set defines a 
form of matrix F in the framework of the chosen 
force field model (i.e., with specified zero 
elements, equality of some force constants, etc.). 
If no a priori data constrains the form of 
solution, then D coincides with the set Z.  
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Let Eq. (4) with the exact data (A and Λ) has 
the unique normal solution F (with regard to a 
certain a priori specified matrix F0).  

It should be noted that if problem (4) with the 
exact given data has a unique solution, it 
essentially coincides with F. If Eq. (4) has no 
solutions, it is necessary to formulize it as the 
problem of finding a normal pseudosolution (or 
quasisolution) i.e. search for a solution of the 
following problem: 

 
 It is required to obtain 

{ }
F F F

F F D AF

n = −

∈ ∈ − =

arg min 0 ,   

 :  F ,  Λ µ
 

where µ = − ∈inf   AF F DΛ , .  
 
The regularizing algorithm in this case must 

provide approximation converging to the normal 
pseudosolution of Eq. (4).  

Now suppose that instead of A and Λ we are 
given some approximate Ah and Λδ such that 

 
A F AF h Fh − ≤ − ≤ϕ δδ( , ),    ,Λ Λ  

 
where h, δ are known errors, and the error δ>0 of 
the right-hand side of Eq. (4) is determined by 
the experimental errors of measurement, and 
ϕ(h,δ) is a continuous function satisfying the 
condition 

 
sup     
F

when 
<

→ →
C

h F hϕ( , ) 0 0  

for any finite C>0. 
 
Now we construct stable approximation Fhδ 

to the normal solution Fn such that Fhδ → Fn  
when     (h,δ ) → 0. The algorithms satisfying 
these conditions are determined as Tikhonov 
regularizing algorithm or regularizing operator. 

In the case when the problem (4) has more 
than one normal solution (or pseudosolution) the 
approximations Fhδ may converge to the set of 
normal solutions Fn (in the sense of β-
convergence). 

In Ref. [1-3] there were proposed some 
regularizing algorithms demonstrated their high 
efficiency. 

One of possible algorithms is based on the 
minimization of the Tikhonov functional 

[ ]M F A F F Fh
α

δ α= − + −Λ 2 0 2
 (5) 

 
where the regularizing parameter α > 0 is 
determined within the generalized discrepancy 
principle [4]. This method is valid also for the 
special estimate of operator Ah   given by 

 
ϕ( , )h F h A Fh= . 

 
The specific problem arises when there is 

known only a set of fundamental frequencies for 
a single molecule. It was proved in [1], that in 
this case the inverse vibrational problem is stable 
in the Hausdorff metrics in relation to the 
perturbations of the experimental frequencies 
and equilibrium geometry. As a result the 
problem of the finding the normal 
(pseudo)solution is also stable (if there exists 
more than one normal solution it means a 
stability in the sense of β-convergence too). We 
can reformulate the problem mentioned above  in 
the next way: 

It is required to find the minimum of the 
functional 

 F F− 0 2
 

on the set of matrices satisfied exactly to the 
experimental frequencies. F0 is a given matrix in 
the linear space Z. 

For a case of single molecule the variety of 
force constant matrices is described as Eq. (2). A 
matrix C may be performed as the multiple of 
n(n-1)/2 simple rotations. We have proposed [5] 
to search a normal solution of the Problem 2 by 
means of the Monte-Carlo method. 

 
CONSTRAINTS ON THE VALUES OF 
FORCE CONSTANTS BASED ON AB 
INITIO CALCULATIONS 

In the Tikhonov regularizing procedure, one 
can increase the stability and accuracy of the 
calculated solution Fα  by using  

a) an extended set of experimental data 
(including microwave spectra or ED data, etc.);  

b) an improved choice of the stabilizer matrix 
F0;  

c) an improved choice of the constraint set D.  
As a particularly effective choice of 

stabilizer, it was proposed [5] to include ab initio 
quantum mechanical results, in particular F0 

matrix, in the regularizing procedure. This leads 
to the concept of regularized quantum 
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mechanical force field (RQM FF), defined as 
the force constant matrix that is nearest to the 
some given quantum mechanical matrix F0 and 
reproduces experimental frequencies within 
given error level. 

The correct choice of constraint set D is also 
extremely important. Physically stipulated 
limitations may either decrease a range of 
possible matrices F, or provide criteria for 
selecting a concrete solution from a set of 
tolerable ones. An incorrect choice of constraints 
may lead to increasing incompatibility of the 
inverse problem, eventually resulting in a 
pseudosolution having no physical meaning. A 
set of a priori constraints may arise from several 
types of limitations on force constant values, e.g. 
[7]: 

1. a part of force constants may be stipulated 
on a priori grounds to be a zero; 

2. a part of force constants may be stipulated 
to satisfy inequalities aij≤ fij≤ bij , where aij, bij -
are certain known values; 

3. some force constants may be stipulated to 
conform to be equal in a series of related 
molecules (or conformers); 

4. the final solution may be stipulated to 
conform to the so-called scaled force constant 
matrix [8], which may also be considered as a 
kind of constraint.  

As a rule, the assumed limitations on the 
values of force constants of polyatomic 
molecules cannot be strictly proved and 
sometimes different theoretical levels can result 
in different forms of force constant matrix for a 
given molecule. Nevertheless, numerical 
quantum mechanical results on molecular force 
fields perform practically unique information 
and provide useful guidance in choosing realistic 
force field models for different types of 
molecules. 

 
DATABASE APPROACH 

The organization of the database of force 
constants requires applying the uniform principle 
of choosing the generalized coordinates and 
corresponding force constants.  

As a background within database approach 
we’ve chosen the redundant systems of internal 
coordinates. All the algorithms throughout the 
package allow internal coordinates to be 
redundant. Redundancy conditions are taken into 
account automatically. Note also that conversion 
from Cartesian to internal coordinates may be 

not unique if coordinates are redundant. In this 
case, software package allows two choices [6]: 

a) to generate canonical matrix F (that is, 
with minimal rank sufficient to represent all 
vibrational degrees of freedom, 3N-6 where N is 
number of atoms); 

b) to generate matrix F with least off-
diagonal norm (this is one of commonly used 
model assumptions). 

Earlier we’ve studied the regularized 
quantum mechanical force fields of different 
organic and inorganic molecules and analyzed 
their relationship to force constants of model 
force fields.  From such analyses, we may draw 
some general conclusions:  

(1) It is clearly evident that many molecules 
certain theoretical force constants connected 
with so-called "remote" interactions are very 
close to zero [7]. Force constants related with 
"rotor-rotor" interactions are very small, 
especially in comparison with diagonal elements, 
and may be safely neglected as is commonly 
assumed in the modified valence force field 
model. 

(2) Force constants of common functional 
groups in related compounds or conformational 
isomers are highly similar and in many cases 
confirm the purely empirical rule of 
transferability of force constants in related 
molecules and the possibility of describing 
distinct conformers with some force constants 
assumed equal. It was shown [7] that  theoretical 
force constants of some functional groups (e.g. 
methyl group, nitro-group, etc.) exhibited such 
similarity in a series of organic molecules. 

This fact also supports the possibility of 
formulating inverse vibrational problems for a 
series of related molecules (or conformers) in 
terms of in-pair equalities of certain force 
constants as it was proposed in Ref. [1] 

For the large size molecules (nanomolecules, 
clusters etc.) the empirical force field 
calculations are still remaining the best available 
source on force field parameters.  The next 
scheme in such kind calculations includes the 
next steps: a) preliminary quantum mechanical 
analysis of moderate size molecular systems 
chosen as key molecules; b) joint treatment of ab 
initio and experimental data on vibrational 
spectra with stable numerical methods [2]; c) 
organization of a database on force field 
parameters transferable in a series of related 
compounds; d) normal coordinate analysis of 
large molecular systems, prediction of the 
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fundamental frequencies and thermodynamic 
functions.   

These calculations 2)-4) may be performed 
with our software package SPECTRUM. All 
possible assumptions concerning the force field 
models considered above and different 
statements of inverse problem were realized in 
our software package SPECTRUM [3] allowing 
calculations of molecules formed by up to 300-
400 atoms. While solving the inverse vibrational 
problems, the regularization parameter is chosen 
in accordance with generalized discrepancy 
principle [4].  

This package allows the use of different sets 
of generalized coordinates (redundant or 
independent) in either direct or inverse 
vibrational problems, using various selections of 
experimental data, imposing special restrictions 
on elements of the force constant matrix (or 
solving unrestricted problems), jointly 
calculating force constant matrices for two or 
more related molecules. These programs 
therefore provide a flexible framework for 
obtaining molecular force fields under a variety 
of theoretical and experimental conditions. 

It should be noted that the package allows 
treating more than one molecule simultaneously 
(and additionally include the data on several 
isotopic species). This is a sensible approach 
when the model assumptions require equivalence 
of certain force matrix elements. When this kind 
of constraints specified, these elements are held 
equivalent throughout the process of 
optimization. This option is of special value for 
verifying transferability properties of force 
constants. 

All constraints can be applied to matrices in 
any chosen systems of generalized coordinates 
(Cartesian, internal, symmetry coordinates, etc.), 
being they redundant or independent. 
Redundancy conditions are taken into account 
automatically. While solving the inverse 
vibrational problem the regularization parameter 
is chosen in accordance with generalized 
discrepancy principle [4].  

Regularizing algorithms based on the joint 
treatment of ab initio and experimental data 
allow us to take into account all features of ab 
initio results and to obtain force constant 
matrices that are the "best" in a sense of chosen 
physical model. For this purpose, we have 
studied the structures, vibrational spectra and 
force fields for different classes of polyatomic 
molecules by ab initio HF and MP2 methods as 

well as with different DFT (Density Functional 
Theory) approaches using standard Gaussian 
basis sets performed with the GAUSSIAN 9X 
packages, calculated the regularized force 
constants and included them in our database. 
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